Reduction in Sulfur Diffusion in Recycled Ground Rubber-Containing Compounds to Improve Tensile Strength
Stefan Frosch, Volker Herrmann, Fabian Grunert and Anke Blume
Location
MDPI
Link:
Abstract
Recycling end-of-life rubber to compound components for new formulations is one of the most promising ways to reach the sustainability goals of the rubber industry. Today, devulcanization and pyrolysis are both methods to reuse crosslinked elastomers. A third recycling approach is to process end-of-life rubber into ground rubber (GR), which is then added to green compounds. However, free sulfur diffuses during mixing, storage and vulcanization from the matrix material into the GR particles. As a result, the crosslink density in the matrix is reduced, which deteriorates the in-rubber properties of GR-containing vulcanizates compared to those that do not contain GR. Therefore, GR particles are mainly used today for rubber parts with less demanding dynamic-mechanical requirements, which limits the use of the particles. This study presents an approach for reducing the sulfur diffusion from the matrix into the GR particles by prevulcanizing the green matrix material. This leads to GR-containing vulcanizates with significantly improved mechanical properties. This new approach shows that the quality of the recycled rubber product can be significantly increased by blocking the sulfur diffusion. Even though such prevulcanization is currently only feasible under laboratory conditions, it might also pave the way for finding solutions in a production scale for an effective incorporation of GR into new rubber compounds.


