Polyisoprene
Polyisoprene
Polyisoprene is made by solution polymerization of isoprene (2-methyl-l,3-butadiene). The isoprene monomer, the structural unit of the natural rubber polymer, can polymerize in four isomeric forms: trans 1,4 addition, cis 1,4 addition, 1,2 addition, leaving a pendant vinyl group, and 3,4 addition. The production of a synthetic analogue to natural rubber was stymied for over 100 years because polymerization of isoprene resulted in mixtures of isomeric forms. In the 1950s, rubber-like elastomers with >90% cis 1,4 isoprene configuration were finally produced using stereospecific catalyts.
Polyisoprene compounds, like those of natural rubber, exhibit good building tack, high tensile strength, good hysteresis, and good hot tensile and hot tear strength. The characteristics which differentiate polyisoprene from natural rubber arise from the former's closely controlled synthesis. Polyisoprene is chemically purer – it does not contain the proteins and fatty acids of its natural counterpart. Molecular weight is lower than natural rubber's, and lot-to-lot uniformity is better. Polyisoprene is therefore easier to process, gives a less variable (although generally slower) cure, is more compatible in blends with EPDM and solution SBR, and provides less green strength (pre-cure) than natural rubber. Polyisoprene is added to SBR compounds to improve tear strength, tensile strength, and resilience while decreasing heat buildup. Blends of polyisoprene and fast curing EPDM combine high ozone resistance with the good tack and cured adhesion uncharacteristic of EPDM alone.
Polyisoprene is typically used in favor of natural rubber in applications requiring consistent cure rates, tight process control, or improved extrusion, molding, and calendering. Tires are the leading consumer. The synthetic elastomer can be produced with the very low level of branching, high molecular weight, and relatively narrower molecular weight distribution that contributes to lower heat buildup compared to natural rubber. For this reason, certain grades of polyisoprene are used as a alternative to natural rubber in the tread of high service tires (truck, aircraft, off-road) without sacrificing abrasion resistance, groove cracking, rib tearing, cold flex properties, or weathering resistance. Footwear and mechanical goods are also major uses. Because of polyisoprene's high purity and the high gum (unfilled) tensile strength of its compounds, it is widely used in medical goods and food-contact items. These include baby bottle nipples, milk tubing, and hospital sheeting.
Disclaimer
Please be aware that the content on our website is provided for general informational purposes only and should not be interpreted as binding or professional advice. The information presented here is not a replacement for tailored, legally binding advice suited to specific circumstances. Although we make every effort to ensure the information is accurate, up-to-date, and reliable, we cannot guarantee its completeness, accuracy, or timeliness for any particular use. We are not responsible for any damages or losses that may result from relying on the information provided on our website.