Converting waste lignin into nano-biochar as a renewable substitute of carbon black for reinforcing styrene-butadiene rubber

Can Jiang, Jinyu Bo, Xiefei Xiao, Shumin Zhang, Zuhao Wang, Guoping Yan, Yanguang Wu, Chingping Wong and Hui He

Location

ScienceDirect

Abstract

Industrial waste lignin was commonly burnt or discharged into river in the past. However, in this study, lignin has been converted into high value-added nano-biochar as a renewable reinforcing filler of styrene-butadiene rubber (SBR) by a simple high-temperature carbonization treatment. Herein, the physicochemical change in lignin before and after carbonization was investigated. It was found that lignin-derived biochar (LB) consisted of vesicle-like primary nanoparticles which were closely packed to form “high-structure” irregular fragments with a high specific surface area (83.41 m2/g). When incorporating LB into SBR, the tensile properties of LB/SBR composites were significantly improved. At the filler loading of 40 phr, the tensile strength and elongation at break of the rubber composite were improved up to 7.1-folds and 2.4-folds of pristine SBR, respectively. Compared to commercial carbon black (CB) N330, the LB showed a similar reinforcing effect on SBR. However, the analysis on the morphology, stress-strain behavior and dynamic mechanical behavior suggested distinct reinforcing mechanisms for LB- and CB-filled rubber composites, due to the difference in the surface properties and structural characteristic of fillers. This work showed the application potential of LB as a renewable substitute of CB in rubber industry and brought environmental and economic benefits for the disposal of lignin.