Significant factors affecting the thermo-chemical de-vulcanization efficiency of tire rubber

Anuwat Worlee, Sitisaiyidah Saiwari*, Wilma Dierkes, Siti Salina Sarkawi

Location

University of Twente

Abstract

In this study, the influence of the molecular structure of the rubber, the carbon black loading and de-vulcanization time and temperature on the thermo-chemical de-vulcanization efficiency of whole tire rubber was investigated by correlating sol fraction and crosslink density (Horikx-Verbruggen method). Differences in molecular structure influence the de-vulcanization mechanisms of rubbers as well as the efficiency. Increasing carbon black loadings result in higher crosslink densities due to a deactivation of the de-vulcanization aid. Variation of de-vulcanization temperature and time results in different degrees of heat accumulation in the rubber during de-vulcanization and thus leads to different de-vulcanization efficiencies.

Let's make the use of biobased and recovered raw materials the new standard.

Let's make the use of biobased and recovered raw materials the new standard.

Let's make the use of biobased and recovered raw materials the new standard.